
Unary Operators
Lecture 26

Section xx.xx

Robb T. Koether

Hampden-Sydney College

Mon, Nov 4, 2019

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 1 / 28



1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 2 / 28



Outline

1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 3 / 28



Outline

1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 4 / 28



Operators that Must be Member Functions

The following operators must be implemented as member
functions.

The assignment operator = (Lab 9).
The subscript operator [] (CS II).

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 5 / 28



Outline

1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 6 / 28



Unary Operators

Unary operators should be implemented as member functions.
The operator is invoked by a single operand.
The expression -a is interpreted as a.operator-()
There is no issue of left operand vs. right operand.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 7 / 28



Outline

1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 8 / 28



The Negation Operator

The Negation Operator
type type::operator-() const
{
// Compute the negative

...
return negated-value;

}

The negation operator (unary -) returns the negative of the value
of the invoking object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 9 / 28



The Negation Operator

The Rational Negation Operator
Rational Rational::operator-() const
{
// Return the negative

return Rational(-nNumerator, mDenominator);
}

The negation operator (unary -) returns the negative of the value
of the invoking object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 10 / 28



Outline

1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 11 / 28



The Assignment Operator =

The Assignment Operator =
Rational& Rational::operator=(const Rational& r)
{

mNumerator = r.mNumerator;
mDenominator = r.mDenominator;
return *this;

}

Recall the definition of the assignment operator from Lab 9.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 12 / 28



The this Pointer

Every member function (except static functions) includes a
reference to the invoking object.

The variable built-in “variable” this holds the address of the
invoking object.
The invoking object itself if obtained by applying the dereferencing
operator *:

*this

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 13 / 28



The this Pointer

Every member function (except static functions) includes a
reference to the invoking object.
The variable built-in “variable” this holds the address of the
invoking object.

The invoking object itself if obtained by applying the dereferencing
operator *:

*this

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 13 / 28



The this Pointer

Every member function (except static functions) includes a
reference to the invoking object.
The variable built-in “variable” this holds the address of the
invoking object.
The invoking object itself if obtained by applying the dereferencing
operator *:

*this

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 13 / 28



Outline

1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 14 / 28



The Pre-Increment Operator ++

The Pre-Increment Operator ++
type& type::operator++()
{

// Increment the object
...

return *this;
}

The pre-increment operator should return the object by reference.
That is, the return value is the very object that invoked ++, not a
copy.
The expression uses the returned value (“increment before use”).
What will ++(++a) do?

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 15 / 28



The Rational ++ Operator

The Rational ++ Operator
Rational& Rational::operator++()
{

mNumerator += mDenominator;
return *this;

}

We define (a/b)++ to be (a/b) + 1, which is the rational

(a + b)/b.

Thus, we simply add the denominator to the numerator.
(The denominator remains the same.)

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 16 / 28



The Pre-Decrement Operator --

The Pre-Decrement Operator --
type& type::operator--()
{

// Decrement the object
...

return *this;
}

The pre-decrement operator - follows exactly the same pattern.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 17 / 28



The Rational -- Operator

The Rational -- Operator
Rational& Rational::operator--()
{

mNumerator -= mDenominator;
return *this;

}

We define (a/b)-- to be (a/b)− 1, which is the rational

(a − b)/b.

Thus, we simply subtract the denominator from the numerator.
(The denominator remains the same.)

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 18 / 28



The Post-Increment Operator

The post-increment operator is somewhat different from the
pre-increment operator.
It must increment (change) the object, but it must also return the
value of the object before it was changed.
The only way to accomplish this is to

Save a copy of the invoking object before incrementing it.
Increment the invoking object.
Return the copy of the unchanged object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 19 / 28



The Post-Increment Operator

The post-increment operator should return the object by value.
That is, the value returned is a copy of the invoking object, before
it was incremented.
A consequence is that expressions such as (a++)++ are not
permitted.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 20 / 28



The Post-Increment Operator

Another problem is that, so far, the pre-increment and
post-increment operators have identical prototypes, except for the
precise return type (by value vs. by reference):

type type::operator++();

To remedy this, we include one unused and unnamed int
parameter to distinguish post-increment from pre-increment.
(This is a completely artificial mechanism.)

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 21 / 28



The Post-Increment Operator

The Post-Increment Operator
type type::operator++(int) // int is unnamed, unused
{

type original = *this;
// Increment the object, using *this

...
return original;

}

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 22 / 28



The Post-Increment Operator

The Post-Increment Operator
Rational Rational::operator++(int)
{

Rational original = *this;
mNumerator += mDenominator;
return original;

}

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 23 / 28



Example

Example (Example)
Add negation, pre- and post-increment, and pre- and
post-decrement to the Rational class.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 24 / 28



Outline

1 Operators as Member Functions
Operators that Must be Member Functions

2 Unary Operators
The Negation Operator
The this Pointer
The Increment and Decrement Operators

Pre-Increment and Pre-Decrement
Post-Increment and Post-Decrement

3 More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 25 / 28



Converting Dates to Integers

To facilitate calculations with dates, we will write functions that will
convert dates to integers and integers to dates.
Our scheme is to assign 0 to Jan 1, 1601; 1 to Jan 2, 1602; and so
on.
If we create the appropriate functions, then we can “cast” a Date
object as an integer and cast an integer as a Date object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 26 / 28



The Date class add() Function

The Date class add() Function
Date Date::add(int n) const
{

return Date(int(*this) + n);
}

To add n days to a date, we will
Convert the date to an integer.
Add n to the integer.
Convert the integer to a date.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 27 / 28



For the Date class, how would we implement
The pre-increment operator ++?
The post-increment operator ++?

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 28 / 28


	Operators as Member Functions
	Operators that Must be Member Functions

	Unary Operators
	The Negation Operator
	The this Pointer
	The Increment and Decrement Operators

	More Discussion of the Date Class

