Robb T. Koether

Hampden-Sydney College

Mon, Nov 4, 2019

«40>» «F)>r « > = E vQ



0 Operators as Member Functions
@ Operators that Must be Member Functions

9 Unary Operators
@ The Negation Operator
@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement
@ Post-Increment and Post-Decrement

© More Discussion of the Date Class

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 2/28



0 Operators as Member Functions
@ Operators that Must be Member Functions

Q Unary Operators

@ The Negation Operator
@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement
@ Post-Increment and Post-Decrement

Q More Discussion of the Date Class

«0O0)» «F» « =) «

v
it

12N G4



0 Operators as Member Functions
@ Operators that Must be Member Functions

Q Unary Operators

@ The Negation Operator
@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement
@ Post-Increment and Post-Decrement

Q More Discussion of the Date Class

«0O0)» «F» « =) «

it
v
it

12N G4



Operators that Must be Member Functions

@ The following operators must be implemented as member
functions.

e The assignment operator = (Lab 9).
e The subscript operator [] (CS II).

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019

5/28



o Operators as Member Functions
@ Operators that Must be Member Functions

Q Unary Operators

@ The Negation Operator
@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement

@ Post-Increment and Post-Decrement

Q More Discussion of the Date Class

«0>» «F>» « Er» « » Q>



Unary Operators

@ Unary operators should be implemented as member functions.
@ The operator is invoked by a single operand.

@ The expression —a is interpreted as a . operator- ()

@ There is no issue of left operand vs. right operand.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 7/28



o Operators as Member Functions

@ Operators that Must be Member Functions

e Unary Operators

@ The Negation Operator
@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement

@ Post-Increment and Post-Decrement

Q More Discussion of the Date Class

«0O0>» «F» «)>» « > Q>



The Negation Operator

The Negation Operator

type type::operator- () const
{

// Compute the negative

return negated-value;

@ The negation operator (unary -) returns the negative of the value
of the invoking object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 9/28




The Negation Operator

The Rational Negation Operator

Rational Rational::operator- ()

{

// Return the negative
return Rational (-nNumerator,

const

mDenominator) ;

}

@ The negation operator (unary -) returns the negative of the value
of the invoking object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 10/28



o Operators as Member Functions

@ Operators that Must be Member Functions
Q Unary Operators

@ The Negation Operator

@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement

@ Post-Increment and Post-Decrement

Q More Discussion of the Date Class

«0O0>» «F» «)>» « Q>

it
v



Rational& Rational: :operator=(const Rationalé& r)
{
mNumerator = r.mNumerator;
mDenominator =
return xthis;
}

r.mDenominator;

@ Recall the definition of the assignment operator from Lab 9.

12N G4

a
n}
v
a
a
it
v
a
it
v
it



@ Every member function (except static functions) includes a
reference to the invoking object.

«0O0>» «F» «)>» « Q>

it
v



The this Pointer

@ Every member function (except static functions) includes a
reference to the invoking object.

@ The variable built-in “variable” this holds the address of the
invoking object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 13/28



The this Pointer

@ Every member function (except static functions) includes a
reference to the invoking object.
@ The variable built-in “variable” this holds the address of the
invoking object.
@ The invoking object itself if obtained by applying the dereferencing
operator «:
+this

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 13/28



0 Operators as Member Functions

@ Operators that Must be Member Functions

e Unary Operators

@ The Negation Operator
@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement

@ Post-Increment and Post-Decrement

Q More Discussion of the Date Class

«0O0>» «F» «)>» « Q>

v
it



The Pre-Increment Operator ++

The Pre-Increment Operator ++

type& type::operator++ ()
{

// Increment the object

return xthis;

@ The pre-increment operator should return the object by reference.

@ That is, the return value is the very object that invoked ++, not a
copy.

@ The expression uses the returned value (“increment before use”).
@ What will ++ (++a) do?

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 15/28




The Rational ++ Operator

The Rational ++ Operator

Rational& Rational: :operator++ ()
{
mNumerator += mDenominator;
return *this;

@ We define (a/b)++ to be (a/b) + 1, which is the rational
(a+ b)/b.

@ Thus, we simply add the denominator to the numerator.
@ (The denominator remains the same.)

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 16/28



type& type::operator—— ()
{
// Decrement the object

return x*this;
}

@ The pre-decrement operator — follows exactly the same pattern.

«0O0>» «F» «)>» « Q>

it
v



The Rational —- Operator

The Rational -- Operator

Rational& Rational: :operator—— ()
{
mNumerator —-= mDenominator;
return *this;

@ We define (a/b)-- to be (a/b) — 1, which is the rational
(a— b)/b.

@ Thus, we simply subtract the denominator from the numerator.
@ (The denominator remains the same.)

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 18/28



The Post-Increment Operator

@ The post-increment operator is somewhat different from the
pre-increment operator.

@ It must increment (change) the object, but it must also return the
value of the object before it was changed.
@ The only way to accomplish this is to

e Save a copy of the invoking object before incrementing it.
e Increment the invoking object.
e Return the copy of the unchanged object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 19/28



The Post-Increment Operator

@ The post-increment operator should return the object by value.

@ That is, the value returned is a copy of the invoking object, before
it was incremented.

@ A consequence is that expressions such as (a++) ++ are not
permitted.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 20/28



The Post-Increment Operator

@ Another problem is that, so far, the pre-increment and
post-increment operators have identical prototypes, except for the
precise return type (by value vs. by reference):

type type::operator++();

@ To remedy this, we include one unused and unnamed int
parameter to distinguish post-increment from pre-increment.

@ (This is a completely artificial mechanism.)

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 21/28



type type::operator++ (int) // int is unnamed,
{
type original = xthis;
// Increment the object,

unused
return original;

using #this

12N G4

a
n}
v
a
a
it
v
a
it
v
it



+this;
mNumerator += mDenominator;
return original;

Rational Rational::operator++ (int)
{
Rational original =

«O>» «Fr « =>» 12N G4




@ Add negation, pre- and post-increment, and pre- and
post-decrement to the Rational class.

[m]

=

Mon, Nov 4, 2019

12N G4

24/28




o Operators as Member Functions
@ Operators that Must be Member Functions

Q Unary Operators
@ The Negation Operator
@ The this Pointer

@ The Increment and Decrement Operators
@ Pre-Increment and Pre-Decrement
@ Post-Increment and Post-Decrement

© More Discussion of the Date Class

«0O0)» «F» « =) «

it
v
it

12N G4



Converting Dates to Integers

@ To facilitate calculations with dates, we will write functions that will
convert dates to integers and integers to dates.

@ Our scheme is to assign 0 to Jan 1, 1601; 1 to Jan 2, 1602; and so
on.

@ If we create the appropriate functions, then we can “cast” a Date
object as an integer and cast an integer as a Date object.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 26/28



The Date class add () Function

The Date class add () Function
Date Date::add(int n) const

{

return Date (int (xthis) + n);

}

@ To add n days to a date, we will

e Convert the date to an integer.
e Add n to the integer.
o Convert the integer to a date.

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 27/28



@ For the Date class, how would we implement

e The pre-increment operator ++7?
e The post-increment operator ++7?

Robb T. Koether (Hampden-Sydney College) Unary Operators Mon, Nov 4, 2019 28/28



	Operators as Member Functions
	Operators that Must be Member Functions

	Unary Operators
	The Negation Operator
	The this Pointer
	The Increment and Decrement Operators

	More Discussion of the Date Class

